
ON THE ARCHITECTURE OF SECURE SOFTWARE DEFINED RADIOS

John A. Davidson
SAIC

San Diego, CA

fic, called ciphertext (CT), but other processes require ac­
cess to decrypted traffic, known as plaintext (PT). An en­
cryption/decryption device, known as a cryptographic
device historically called a Key Generator (KG), performs
the PT/CT conversions. In an SDR, these functions are
synthesized by computers, making it convenient to define
arbitrary radio signals, networking protocols and user in­
terfaces with software programs. The collection of soft­
ware programs that make an SDR emulate a specific radio
is collectively referred to as waveform software. The pro­
grams that implement common waveform software com­
mands are infrastructure software.

ABSTRACT

INTRODUCTION

This paper examines the rationale, properties and short­
comings of the prevailing "red-black" architecture for
secure software defined radios (SDR). To address short­
comings, a computer security process is formalized that
leads to a provably secure SDR architectural framework.
Although an example ofa secure architecture is discussed,
the focus is to explore an architectural design strategy to
achieve guaranteed secure operation. The result is more
of an architectural framework with remarkable potential
relative to previous approaches, including enabling de­
terministic development, operational friendliness, high
performance, and affordability through strategic use of .
hardware to strengthen and simplify the enforcement ofthe RadI~.
security policy instead ofsimply trusting software. connectIvIty

Figure 1. Typical Secure SDR Communications Channel Functions.

INFORMATION ASSURANCE VIEWPOINT

Figure 2. Generalized red-black

I I
I IL J

An SDR is a computer system, and we know how to de­
sign a computer system based on requirements. We have
that game plan down, like playing checkers. When we
design a secure computer system the rules are different.
Security is not simply another requirement; it is another
game, more complex, like chess. Worse yet, the game
board is deceptively similar. Conventional system engi­
neering methodologies fail to produce results that meet
security expectations because the sufficient set of security
requirements is often vague or missing. This lack of clear
security requirements leads to nondeterministic develop­
ment, more like trial and error than the deterministic de­
velopment process planned (and costed). To reveal rea­
sons for this problem we must first lay some groundwork.

First we establish an understanding ofjust what an SDR is.
An SDR is a computer, or in recent years, more typically a
system of co-located networked computers that implement
a function that happens to be a two-way radio. A secure
SDR often implements a network radio, meaning that there
are a number of radios cooperating in a network routing
data among themselves. Each node in the network per­
forms radio and networking functions, as well as providing
land-line user interfaces. This secure SDR is also an ap­
plication on a secure computer that protects, encrypts and
decrypts the payload traffic as required. As shown in
Figure 1, some operations can be applied to encrypted traf-

When cryptographic algorithms were implemented in
hardware boxes, TEMPEST techniques were used to sepa­
rate the PT side from the CT side from unintended leakage
of PT (red) signals onto CT (black) cabling via conducted
or radiated emanations. This tradition influenced early
tendencies to organize radio functions by red and black
sides [1], [2] illustrated in Figure 2. The crypto function
designated
KG protects
information
by substitut­
ing a key-
dependent architecture framework for secure SDRs.

secret code for the clear text traffic. Based on that, the
prevailing security architecture strategy [3] separates an
SDR into two security domains, red and black. The con­
trol of the overall radio must be hosted in one of those do­
mains. In practice, almost all control of the radio is done
with unclassified parameters (e.g. channel assignments,
protocol selections, RF power levels). The approach of
hosting control on the black side shown in Figure 3 facili­
tates control of unclassified radio assets. The control
must pass the red-black boundary, but in the direction al­
lowable by secrecy if it is constrained by simple one-way
flow. (Note: integrity is addressed later.) One problem
with black-side control is that it places the control of the
radio in the same domain that contains adversaries. De-

978-1-4244-2677-5/08/$25.00 ©2008 IEEE 10f7

Authorized licensed use limited to: Isfahan University of Technology. Downloaded on June 9, 2009 at 08:05 from IEEE Xplore. Restrictions apply.

fense in depth [4] has been suggested [5] as the strategy
for high assurance protection. This is extremely hard to
accomplish without encountering the Cascading Problem
[6] (cascading many three-foot hurdles fails to achieve the
effect of a six-foot hurdle.) Too often, high-assurance is
mistakenly [7] attributed to cascading a number of low­
assurance mechanisms. The alternative for a red-black
radio is to host the control with plaintext processing from
the red-side as in Figure 4. Drawbacks of trying to protect
control by moving it to the red side are more obscure.

Figure 3. Black-Side Control.

I
I

~-----------------------------------

Figure 4. Red-Side Control.

How CONTROL BYPASS BECOMES SUCH A

"NECESSARY EVIL"

Red-side control locates control across the red-black
boundary from the black-side assets it controls, so control
flow goes in the wrong direction to preserve secrecy [8] of
the red side. Control bypass is often expected to provide
an acceptable way to secure such wrong-way flow. Since
packet protocols have become pervasive, it is customary to
bypass header address and service information between the
PT packets to CT packets. Header bypass is not a rigor­
ously secure solution, but it has become customary to view
the vulnerability as "manageable" [9] because it is imprac­
tical to fix. The technical basis for its mitigation involves
specialized schemes like state filters that discourage ex­
ploitation of this leak by modulating packet headers (not
useful for control bypass). Justification of control bypass
as an extension of header bypass is not a satisfying stance
because external factors drives header bypass. Justifica­
tion of control bypass as an inevitable covert channel is not
supportable either. The term covert channel properly ap­
plies only to channels not intended for any data communi­
cation. [10] Bypass is "evil" because it amounts to spillage
by what is known technically as a non-secure state.

The proliferation of bypass on SDR flow paths leads to
examination of whether the red side - black side paradigm
is doing the right job. It is not structured to separate un­
equal security levels. The bypass it relies on is contrary to
the separation mechanisms that isolate the red side from
the black side. Bypass not only undermines costly separa-

tion mechanisms, but will also be shown to lead to superfi­
cial bypass guards. Nagging concerns about the purity of
the red-black paradigm are rooted in a lack of rigor about
what red and black domains really meant since it was
never based on a consensus of what secure behavior
means, customarily expressed as a security policy. The
paradigm originated [11] to address TEMPEST separation in
analog circuits, but it is less useful for today's digital com­
puters.

COMPLICATION OF DEALING WITH

COMMUNICATIONS PLANS

If coordinated control of the radio's classification-diverse
channels were not needed, rigorous hardware channel
separation, loosely known as Multiple Single Levels of
Security (MSLS), might work. However channel set-up
and control parameters must be derived from external
communications plans, requiring additional radio plan­
ning/control interfaces. A communication plan is often
conceived as a classified (secret) objective. Before using
computers, unclassified elements of the plan were deduced
by humans from the secret objective and used to generate
unclassified radio set-up parameters. For an SDR these
functions can be hosted (potentially externally) in a plan­
ner workstation. To avoid the inconvenience and cost of
making this planner workstation trustworthy, it is tempting
to regard it as "system high" secret. System high is a for­
mal COMPUSEC term that results in all the parameters con­
tained in the operating environment (OE), including un­
classified, being re-classified at the high water mark,
typically secret. This system high strategy produces a
false sense of security by obscuring the fact that the plan­
ner must be trusted to separate security levels anyway, but
it also adds a superficial but expensive trusted guard to the
radio to restore the separation of unclassified and secret
parameters. As illustrated by the upper arc in Figure 5, the
radio must get the unclassified parameters to the black
side. A control bypass channel in the radio supports this,
with a guard preventing secret parameters from passing, as
suggested by the leak in Figure 5. Because this bypass
guard has no criteria on which to base a decision except to

Figure 5. Risk imposed by bypass guards that
rely on criteria originating in system high sources

is bounded only by bandwidth constraints.

trust some format or content property produced by the
planner, the planner might as well have been acknowl-

20f7

Authorized licensed use limited to: Isfahan University of Technology. Downloaded on June 9, 2009 at 08:05 from IEEE Xplore. Restrictions apply.

s

edged as trusted at the outset and given a direct interface to
the black side, thus eliminating the high assurance guard.

WHAT CAN BE DONE To IMPROVE

At the outset of this paper, it was suggested that the suffi­
cient set of security requirements to guarantee secure be­
havior is critical to program success. It is the author's ex­
perience that a sufficient set of security requirements is
almost never found in system perfonnance requirements.
But without them, the development process lacks criterion
for design process tennination and corrective design feed­
back is vague or wrong. This leads to a development that
proceeds open-loop, in a design-by-trial-and-error manner.
The schedule, cost and risks are unbounded for such a de­
sign process. Typical symptoms for this are chronic secu­
~ty architecture issues as cited recently for some SDR pro­
Jects [12]. A set of security requirements sufficient to
guarantee secure behavior for an SDR is critical to develop
a secure architecture. Such a set will be referred to as a
su;fjicient set.

It is widely acknowledged, at least among "old-guard"
COMPUSEC subject matter experts, that there is one docu­
mented [13] process that can produce the sufficient set of
security requirements. The process is analytical; it derives
a Security Policy Model, and deduces this sufficient set of
security requirements from that model. Defining the right
security policy model is critical to that process. At a high
level, the author generally follows five steps outlined here
for the process diagrammed in Figure 6.
1. Define secure behavior for SDR (SDR Security Policy).
2. Create a correct data flow model of the SDR Security

Policy, a Security Policy Model (also called Policy
Model).

3. Create a data flow model of the SDR system that satis­
fies operational requirements. For this, a System Model
expressed in the fonn of Data Flow Diagrams [14] cap­
tures the security-critical features, arguably not visible
with UML because it hides flow/process distinction.

4. Converge the System Model to the Policy Model (Se­
cure SDR System Model).

5. Verify that the implementation corresponds to the Se­
cure SDR System Model.

The Security Policy expresses the fundamental definition
of secure SDR behavior regardless of the approach. The

Security Security
I"'-~IM·~""";' Model

Figure 6. Secure System Engineering Process Flow Diagram.

Security Policy typically represents a consensus of all
stakeholders at an operational level. Steps I and 2 depend
on the system data environment, not the implementation.

The Policy Model is a behavior model, usually expressed
mathematically (i.e. fonnal). The model precisely exhibits
the security properties of the policy, but expressed in tenns
that can be logically validated. This is helpful because it is
surprisingly difficult to validate security without some
math. A case in point is the Red/Black model underlying
the security architecture discussed earlier in this paper.
The properties of that model are not consistent with each
other. Consider that both secret traffic and control are
hosted on the red side, loosely presumed secret; so secret
control objects must flow to the unclassified black side
contradicting a presumed premise. That policy lacks in~
ternal consistency, and will need to be bypassed to make a
ra?i~ work. Fonnalizing the model (math-based model)
ehmInates vague presumptions and assures internal consis­
tency. A Policy Model also serves as a common link be­
tween the English expression of the Security Policy and
the tec~ical properties of a system model by integrating
propertIes of both. It is also surprisingly difficult to estab­
lish whether or not a Security Policy is enforced by an im­
plementation without using a model.

The ~~licy model is a technical elaboration of only the
definItIon of secure behavior, and avoids dependencies on
design approach to achieve the operational requirements.
While there are a variety of approaches that could be taken
to produce a policy model for a given policy, there are
substantial risks and technical pitfalls too. Infonnal ap­
proaches often produce models with internal inconsisten­
cies. Fonnal models can be difficult to converge to a use­
ful system model. Because policy modeling can go wrong
[15], discretion is advised. The author believes that flow­
type security policy modeling is among the least error­
prone viewpoints since flow and domains correspond well
to familiar architectural notions of real systems.

AN SDR SECURITY POLICY

An exempl~~ security policy that serves as a practical top­
level definItIon of secure SDR behavior combines two es­
sential dimensions of infonnation assurance (IA): confi­
denti~lity and integrity. The objective is to strike an ap­
propnate balance between a policy at a high enough level
that it does not limit implementation options and ap­
proaches, while being specific enough to be complete in
coverage of at least the minimal essential IA objectives.

Military SDR solutions are generally obligated to enforce
the National Security Policy expressed by the Executive
Order 12958 (EO) [16]. The EO establishes security levels

30f7

Authorized licensed use limited to: Isfahan University of Technology. Downloaded on June 9, 2009 at 08:05 from IEEE Xplore. Restrictions apply.

for data, clearance levels for people and mandatory access
controls that prevent disclosure of the classified data to
persons not appropriately cleared. Also, it is considered
prudent by many stakeholders to protect the integrity of
SDR control plane from corruption by elements in the traf­
fic domain, a broader community with greater exposure to
adversaries. Formal IA technology is available to guaran­
tee near absolute enforcement of confidentiality and integ­
rity. While availability may be no less important, it is ac­
knowledged that there is no widely accepted IA
technology to guarantee it with formal certainty, and so
best-effort methods must be acceptable for this.

Derived requirements for mechanisms like discretionary
access controls and key management can be inferred from
the top level policy. They can be addressed as lower level
design-specific derived requirements and are beyond the
scope of this paper. The provisions proposed as an accept­
able definition for secure behavior for this case of an SDR,
can be condensed into three assertions as follows:

AI. System Absolutely Prevents Disclosure of Classified
Data

A2. System Absolutely Prevents Corruption of Control by
User Traffic

A3. System Substantially Prevents Service Denial with
Best Efforts

These policy assertions (as is typical of security policy
assertions amount to negative requirements and therefore
are useless as design or test requirements. These need to
be transformed into a form that can guide a design process.
The security policy model process performs this transfor­
mation from policy assertions to policy model. It produces
a model with minimal essential properties that the system
must exhibit to enforce the security policy with mathe­
matical precision. That means the model embodies the
least set of security requirements that are sufficient to en­
force the policy with certainty. That is a noteworthy guar­
antee. Such precise solutions raise concerns about cost
effectiveness when so often the proverbial "80% solution"
is expected to be more cost effective. Unfortunately, no
known IA process can reliably achieve an 80% solution.
Trial and error may eventually produce 80% solutions, but
usually at a much higher cost (unbounded) than the 100%
solution sought by the IA process.

PICKING A "Low HANGING"

SDR SECURITY POLICY MODEL FRUIT

Since there is no widely accepted IA technology to for­
mally address assertion A3, service denial, we acknowl­
edge that must be addressed, but with best effort means.
So we set this admittedly serious vulnerability aside for
another paper. Only the first two secrecy-critical asser-

tions are formally modeled. The first assertion implements
the hierarchical security classifications and access rules
expressed by the EO. A substantial and widely vetted
body of work already exists that applies this to a comput­
ing environment. The seminal work for this is the Bell­
LaPadula (BLP) [8] formal security policy model. It has
been formally proven to precisely model these hierarchical
secrecy levels of the EO and interpreted briefly in common
laymen's terms for computer operations (reads and writes
to objects) by what has come to be known as the Multics
Interpretation. So if we use BLP, we can include the ex­
isting proof as our supporting evidence without much risk
of it being wrong. BLP can be viewed as a flow type
model that establishes a domain for each security level,
and prohibits flow from higher to lower domains. For the
simple case of secret and unclassified, the BLP would
model this as two domains, Sand U, with unidirectional
flow only from U to S. Biba [17] extended BLP to address
integrity levels for cases where integrity can be repre­
sented by hierarchical levels analogous to security classifi­
cations. For integrity, Biba showed flow is inverted from
low to high. These two models can be combined [18] with
Cartesian products of their domains while preserving the
flow constraints over the product. These formal security
policy models are precisely expressed mathematically with
set theory, but the math is not presented in this paper. In­
stead, Figure 7 presents an example graphic visualization
of the underlying mathematical model discussed. It is well
established that the IA properties of these models are
equivalent to those of the policy.

Bell-LaPadula Biba . . I
Secrecy Integrity UnclaSSified Secret

'------------1------'
M~~del X M~oidel- (C;9_nJrQ ~~~~)- - - - -? ,"T~afffc --- -

I

riiiiiiiiiiiiiiiiiiiiiiiiiiiiiiil " I

L;~~~~~ ', ~------,'

Flow -. A Visualization of the
combined Policy Model

Figure 7. BLP and Biba models are combined to derive the
necessary and sufficient domains and allowable flow.

There are at least two practical high-assurance approaches
to enforce this policy. One is to use an MLS operating
system (OS). A successful and relevant worked example of
this approach, the BLACKER system, implements similar
top secret through unclassified MLS requirements (except
RF) with a similar security policy. As noted, [19] its Class
Al security "requirements are satisfied by a single logical
processor managing the cryptographic component, a revo­
lutionary approach." For integrity requirements [20]
BLACKER leveraged the fact that "this kernel defines and

40f7

Authorized licensed use limited to: Isfahan University of Technology. Downloaded on June 9, 2009 at 08:05 from IEEE Xplore. Restrictions apply.

Figure 8. Alternate SDR Security Architecture Framework.

of trusting the planer can be recovered using a guard in the
radio, itself MLS and costly, or using an operationally un­
friendly manual downgrade, also costly and MLS. Using
multiple processors sharing an HMI to implement the
planner holds some potential for avoiding an MLS as if
the sources of planning data can be MLS.

Isomorphism between this framework and the policy
model is straightforward except for the crypto and the
switch (Sw). The crypto can be shown to reliably stop
data flow by transforming the information to cover its in­
telligibility. The switch, enabling economy of sharing of
baseband interface units, routes flow between incompati­
ble domains. It must be shown robustly implemented and
controlled to preserve the domains and flow of the policy
model. This requires high assurance of the integrity (i.e.
mandatory integrity) of the switch control, thus avoiding
commands authenticated in untrusted sources. To avoid an
MLS OS the commands from untrusted sources could be
treated as requests if adequately validated with hardware.
A promising approach compares crypto key labels with
user port classification discrete signals via trusted paths
(e.g. connector backshell strapping at the port interface.).

SDRMLS Planner

A PEEK AT THE DEVIL IN THE DETAILS

It is remarkable that simply by isolating the boxes and en­
forcing the unidirectional flow between them consistent
with the policy model (illustrated in Figure 8), security
policy enforcement can be guaranteed. The power of this
framework stems from its ability to simplify the proof of a
blanket high-assurance policy enforcement over all proc­
esses in the radio, substantially relieving the software of
the security critical responsibility for being secure. That
power is eroded each time it becomes necessary to punch a
hole in that blanket to accommodate a "corner case." Cor­
ner cases are exceptions that can arise where processes
need the privilege to violate these blanket mechanisms to
do their job. When processes are given this privilege, they
must be individually shown to be trustworthy to enforce
the policy on themselves. They are known as trusted proc­
esses and are expensive to assure and vulnerable. If they

I Application of the Computer Security Intennediate Value Theorem
also proves that the radio as a whole operates in MLS mode if a user
provides classified traffic~ since unintended users of the RF can be
uncleared, making RF unclassified. A practical solution is allocating
that MLS responsibility to functions in the trusted OE of the crypto.

It is not always possible to arrange proces­
sors and one-way links in a manner that
has this lattice isomorphism property
while substantially satisfying essential
system operational requirements. Fortu­
nately for an SDR, the process and data
flow framework shown in Figure 8 ac­
complishes this. This organizes the traffic
channel functions of Figure I and control
functions of Figure 3, by classification. It
differs from the red-black paradigm in
two noteworthy ways. Instead of a red domain, it has a
separate PT classified traffic domain for each classification
level. Instead of a black domain, it has separate CT (un­
classified) traffic and unclassified control domains distin­
guished by the heavy horizontal broken line. Also above
that line to the right is a domain for secret control, should
that be needed. If it is, something is forced into multilevel
secure (MLS) mode by the logic of the Computer Secu­
rity-Intermediate Value Theorem [24] and responsibility
for that must be allocated. A practical solution is to con­
solidate this MLS responsibility 1 in the Planner, potentially
outside the radio. This avoids the questionable expectation
that the classification separation lost by avoiding the cost

THE RESULTING ALTERNATE

SDR ARCHITECTURE FRAMEWORK

For SDRs with multiple processors, an alternative high
assurance approach offers the potential to enforce this pol­
icy model without an MLS OS. An MLS SDR can be
composed using a single level processor for each domain
and hardware one-way links in an Asymmetric Isolation
[22] architecture. This requires more ingenuity to arrange
the processors and one-way links to have a one-to-one cor­
respondence to the domains and arcs, respectively, of the
policy model, formalizing the system model. Formal cor­
respondence of the system model to the security model
amounts to establishing isomorphism between the nodes
and directed arcs of a partially ordered lattice representa­
tion [23] of the policy model to corresponding physical
components (the nodes and unidirectional links) of the sys­
tem model (node mapped to machine; directed arc mapped
to one-way link).

enforces an integrity policy [Biba]." They ended up "se­
lecting GEMSOS, an off-the-shelf kernel from Gemini
Computers" [19], for which current versions continue to be
available as a COTS product [21].

50f7

Authorized licensed use limited to: Isfahan University of Technology. Downloaded on June 9, 2009 at 08:05 from IEEE Xplore. Restrictions apply.

are software processes they must be hosted in a protected
OE. Trusting software at high assurance levels also im­
plies either exhaustive "branch and path analysis" becomes
unreasonably expensive on more than a few lines of code,
or just accepting the risk as another case of "managed"
risk. [9] Furthermore, trusting software often requires pro­
tections like encrypting it for storage that potentially affect
performance and boot-up or instantiation timeframes. This
is why simply trusting all the radio's software is consid­
ered unreasonable.

Comprehensive treatment of strategies to address such
comer cases is beyond the scope of this paper. However it
is prudent to offer some insight into their potential com­
plexity. The most common example in secure packet
switched systems is header bypass that remains an exploit­
able exception to the assumption that the crypto passes no
cleartext classified information. A Catch 22 situation arises
when an unclassified header arrives in a packet containing
secret userdata and so is technically MLS, but its source is
an untrusted secret system high machine. Due to this in­
consistency, the header information (such as packet ad­
dressee) must be bypassed to an unclassified radio router
process and consequently downgraded. This downgrade is
customarily allocated to the crypto since it typically has a
trusted OE and it is necessarily involved in that flow path.

Other comer cases arise, such as that of passing a classi­
fied waveform parameter to a modem signal processor
which consumes the parameter to produce unclassified RF.
By the CS-IVT, something in that modem must be MLS.
This is suggested in Figure 8 by the thin curved dashed
line from the Secret Set-up & Control function to the oval
in the CT process. A solution involves defining a domain
boundary between classified and unclassified inside the
modem and showing the boundary is trustworthy. Assur­
ance may include properties of the software or the hard­
ware that preclude unintended leakage. By showing that
there is no leakage along the flow path of the parameter or
across that boundary, the need for a guard or trusted filter
between the modem and the secret control processes to
enforce the policy is eliminated.

This case illustrates a strategy of "redistricting" domain
boundaries sometimes applicable to other comer cases. It
essentially creates an island of one domain within what
was otherwise a hardware delineated domain. Redistrict­
ing works when a domain boundary is easy to enforce (e.g.
exploiting hardware modularity) around functions within a
component that is otherwise a member of a different do­
main. Although other creative strategies for trusted proc­
esses exist, the default blanket mechanisms are inexpen­
sive and more easily assured. These comer cases require
creative allocation of processes to architectural elements in

such a way as to never breach the integrity of the blanket
mechanisms. Each additional case addressed as a trusted
process undermines the blanket mechanisms a little more.

Whether this framework should support instances of ver­
bose middleware across domain boundaries is debatable.
However, even middleware-supported interprocess com­
munication (including CORBA) with the intent to transfer a
parameter one-way across a domain boundary in the direc­
tion allowed can require intervention to avoid the need to
trust software. Although CORBA has security features,
these are not trustworthy with high assurance, so trustwor­
thy mechanisms must be used. Intervention comes at a
cost of some of the intended spontaneity and flexibility of
the middleware. A potential strategy is to synthesize back­
flow handshaking used for "reliable" communication lo­
cally in the high domain. Since this undermines the reli­
ability objectives of that handshaking, communication re­
liability may be recovered by other strategies such as
empowering the destination domain processes to address
exception processing autonomously as much as possible.

Unfortunately, interaction crossing domain boundaries
against the directed arcs of the policy model (middleware­
supported or otherwise) must inevitably be addressed with
the aforementioned expensive trusted processes. This may
involve decomposing the command structure to communi­
cate only the core information with minimal entropy. The
strategy would avoid communicating any handshaking that
can be synthesized without flow in the wrong way across
boundaries. The trusted process would need to be hosted
in a protected OE established by a trusted OS or isolated in
a separate processor. There may be no strategy to manage
high risk in these cases except to limit the bandwidth of
the leak, so emphasis should be placed on avoiding them.

CONCLUSION

Besides presenting a provably secure SDR architecture
framework and addressing some implementation consid­
erations, this paper illustrates other remarkable things. It
illustrates an economical scheme that uses hardware to
eliminate, or substantially eliminate trusted software for an
MLS SDR. It shows how a little bit of MLS awareness in
the planner preserves classification separation to relieve
the substantial operational burden of a manual downgrade
and the MLS OS in the radio, improving user friendliness.
This architecture framework encourages early architectural
problem resolution by focusing attention on the cases of
trusted functions and pinpointing domain boundaries
where they exist. This focuses design energy on the im­
portant challenges. No less remarkable is the recognition
of how easily informal reasoning can be deceived, illus­
trating the value of formal COMPUSEC methods.

60f7

Authorized licensed use limited to: Isfahan University of Technology. Downloaded on June 9, 2009 at 08:05 from IEEE Xplore. Restrictions apply.

The development approach benefits substantially from this
policy-driven strategy. It produces clear, relevant and
verifiable security requirements. This provides corrective
feedback and termination criteria for the development
process making it manageable and finite. Because it pro­
duces the sufficient set of requirements needed to be se­
cure, the artifacts represent proof the system is secure.
This provides an alternative to expecting certifiers for ar­
chitectural guidance. It empowers the developer to accept
responsibility for the security architecture and to precisely
address the certification with certainty early in the devel­
opment. It enables developers to avoid the only "dumb"
question in computer security: "Why isn't my system se­
cure? Instead it empowers the developer to assert: "Here
is precisely why my system is secure: ..." Inverted devel­
oper-eertifier roles strain relations and interfere with the
essential collaborative spirit that streamlines certification.

ACKNOWLEDGEMENTS

Of the many who assisted with this paper, the author par­
ticularly wishes to acknowledge the gentle encouragement
of Dr. David Elliot Bell to preserve the formal foundations
of this methodology, and the ever-surprising insight of
Scott Finkelstein whose contributions enabled this strategy
to be practical enough to actually work. Mark Altier and
Raymond Moberly's help organizing and wording some of
the concepts substantially improved readability of this pa­
per.

REFERENCES

[1] Hayes, Neli, "Software Communications Architecture,"
Feb.l, 2005, Object Management Group:
http://www.omg.org/docs/omg/05-02-01.ppt
[2] Kurdziel, M.; Beane, J.; Fitton, J.J., Military, "An SCA
security supplement compliant radio architecture, Com­
munications Conference," 2005. IEEE MILCOM 2005,
17-20 Oct. 2005 Page(s): 2244 - 2250 Vol. 4.
[3] Bard, J. & Kov~ V., Software Defmed Radio: Software
Communications Architecture, John Wiley & Sons, 2007.
[4] Stytz, M.R., "Considering Defense In Depth for Soft­
ware Applications," Security and Privacy, IEEE Publica­
tion, Jan.-Feb. 2004, v. 2, Issue 1. pp. 72-75.
[5] Murotake, D. and Martin, A., "Updated System Threat
and Requirements Analysis for High Assurance Software
Defined Radios," SDR Forum Conference, Orange Co,
CA., Nov.14-18, 2005.
[6] TG-005, NCSC, Trusted Network Interpretation, DoD
TCSEC, DoD 5200.28-STD, Section C.3.2.
[7] Whittaker, J., Defense in Depth section in "Why secure
applications are difficult to write" Security and Privacy,
IEEE Publication, Mar-Apr 2003, Volume: 1, pp. 81-83.
[8] D.E. Bell and L.J. LaPadula, "Secure Computer Sys­
tems: Unified Exposition and Multics Interpretation,"

MTR-2997, The MITRE Corp, Bedford, MB, July 1975,
(ESD-TR-75-306).
[9] "Managed risk," a laudable-sounding concept that "has
been used to justify use of low- or medium-assurance
components to secure classified data (especially at the
SECRET level) without much analysis of the threat or
evaluation of the adequacy of the offered countermea­
sures" F. Schneider, ed., Trust in Cyberspace. National
Academy Press: Washington, DC, 1998, p. 109. Trust in
Cyberspace was referring to MISSI, but the characterization
of risk management is general.
[10] Lampson, B.W., A note on the confinement problem.
Communications of the ACM, Oct.1973.16(10):p.613-615.
[11] IA context of the term "Black" may have originated
with early encryption devices dubbed "blackers" because
they obscured information into virtual blackness.
[12] General Accounting Office, Report to the Subcommit­
tee on Air & Land Forces, Committee on Armed Services,
House of Representative, GAO 08-877, August 2008.
[13] Trusted Computer Security Evaluation Criteria, DoD
5200.28-STD, December 1985.
[14] Structured Analysis and Design Methodology, Office
of Government Commerce, an Office of the UK Treasury.
[15] Denning, D. E., "The Limits of Formal Security Mod­
els," National Computer Systems Security Award Accep­
tance Speech, Oct. 1999.
[16] President Clinton, "Executive Order 12958," as
amended. The White House, Office of the Press Secretary,
April, 17, 1995.
[17] K. Biba, "Integrity Considerations for Secure Com­
puter Systems," MITRE Corp, Bedford, MA April 1977.
[18] NCSC, TG-I0l, A Guide to Understanding Security
Modeling in Trusted Systems, in DoD TCSEC, DoD
5200.28-STD.
[19] Weissman, C., "BLACKER": Security for the DDN,
Examples of Al Security Engineering Trades," Proceed­
ings of the 1992 IEEE Symposium on Security and Pri­
vacy pp. 286-292.
[20] Fellows, J., Hemenway, J., Kalem, N., and Romero,
S., "The Architecture of a Distributed Trusted Computing
Base," Proceedings of the 10th National Computer Secu­
rity Conference, Sep. 1987, pp. 68-77.
[21] One COTS potentially MLS-capable OE based on a
Formal Top Level Specification, August, 2008.
http://www.aesec.com/
[22] Davidson, John A., "Asymmetric Isolation," Proceed­
ings of the 12th Annual Computer Security Applications
Conference, IEEE Computer Society Press, Dec. 1996.
[23] Denning, D. E., "A Lattice Model of Information
Flow" Communications of the ACM, 1976, pp. 236-243.
[24] Bell, David Elliot, "Looking Back at the Bell­
LaPadula Model," December 7, 2005, p. 10, as published
online at http://www.acsac.org/2005/papers/Bell.pdf

70f7

Authorized licensed use limited to: Isfahan University of Technology. Downloaded on June 9, 2009 at 08:05 from IEEE Xplore. Restrictions apply.

